If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-16x^2-50x+42)=0
We get rid of parentheses
-16x^2-50x+42=0
a = -16; b = -50; c = +42;
Δ = b2-4ac
Δ = -502-4·(-16)·42
Δ = 5188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5188}=\sqrt{4*1297}=\sqrt{4}*\sqrt{1297}=2\sqrt{1297}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{1297}}{2*-16}=\frac{50-2\sqrt{1297}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{1297}}{2*-16}=\frac{50+2\sqrt{1297}}{-32} $
| 62+5y-27=15y-14-3y | | 17=3+w | | 10b-7+17=-11+13b | | 5x-4=-7 | | 5(w+6)-8w=12 | | 5y2=1/2(10y+4) | | -2w-3(2w+1)+5=26 | | -6–8c=-7c | | 5x+5-2=13 | | -9s+2=-10s+20 | | -x+6=20-3x | | 0.06x-0.8=0.18 | | -1+7d=20+4d | | 6-x=-18 | | 0.25w+0.14=0.65w-0.98 | | -2b-7b=0 | | 7/4x-3=2/5(x+1) | | 7/2=m/4 | | 3/4x+5/12x-2/3=-3 | | 3x-6+6=5x-6 | | 4j–3=7+6j | | 2b/3=-28 | | 33-6x=17+10x | | -3y-6=y+3 | | -8+9d=6d+10 | | 9h+15=-93 | | 12=-15w | | 3/4x+5/12x+-2/3=-3 | | 8g=9g+5 | | 91=7(x+6) | | 5h-13+3h=-16-31h-7 | | 0.7-0.4y=0.8+0.6y |